
ME 8930 Final Project Presentation

Policy Gradient Methods
&

Applications to Learned Locomotion

Alexander Krolicki
akrolic@clemson.edu

Sarang Sutavani
ssutava@clemson.edu

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Overview

1. Methods
2. Our Problem
3. Results
4. Comparison
5. Summary
6. Future Work

2

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Policy Gradient Methods

3

(1)

(2)

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Policy Gradient Methods: Advantages

4

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Limitations of Plain Policy Gradient

5

(3)

(4)

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Comparing 2 Policies

6

(5)

(6)

(7)

(8)

(9)

(10)

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Monotonic Improvement in Policy

7

(11)

(12)

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Trust Region Policy Optimization

8

(13)

(14)

(15)

(16)

(17)

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Proximal Policy Optimization

9

(18)

(19)

(20)

(21)

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Application to Learned Locomotion

10

• Deep Reinforcement Learning is actively researched and applied
to physical robots with impressive results. [1]

• Most methods rely on domain specific knowledge, model based
approaches, or even imitation learning. [2]

• Our study aims to evaluate how a quadruped agent can learn a
gait motion completely from scratch.

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Environment: Spaces, Rewards, Episodes

11

• State Space 𝑆𝑆 ∈ ℝ28

• Motor Angles S ∈ 𝒒𝒒 = {𝑞𝑞11, 𝑞𝑞12, 𝑞𝑞21, 𝑞𝑞22, 𝑞𝑞31, 𝑞𝑞32, 𝑞𝑞41, 𝑞𝑞42}
• Motor Velocities 𝑆𝑆 ∈ �̇�𝒒 = {�̇�𝑞11, �̇�𝑞12, �̇�𝑞21, �̇�𝑞22, �̇�𝑞31, �̇�𝑞32, �̇�𝑞41, �̇�𝑞42}
• Motor Torques 𝑆𝑆 ∈ 𝑻𝑻 = {𝑇𝑇11,𝑇𝑇12,𝑇𝑇21,𝑇𝑇22,𝑇𝑇31,𝑇𝑇32,𝑇𝑇41,𝑇𝑇42}
• Base Pose 𝑆𝑆 ∈ 𝒑𝒑 = {𝒙𝒙,𝒚𝒚, 𝒛𝒛,𝒘𝒘}

• Action Space 𝑆𝑆 ∈ ℝ8

• Motor Angles 𝐴𝐴 ∈ 𝒒𝒒𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = {𝑞𝑞11, 𝑞𝑞12, 𝑞𝑞21, 𝑞𝑞22, 𝑞𝑞31, 𝑞𝑞32, 𝑞𝑞41, 𝑞𝑞42}
• Reward Function

• Penalizes not moving forward and actuator effort
• 𝑅𝑅 = 𝒑𝒑𝑛𝑛 − 𝒑𝒑𝑛𝑛−1 𝒙𝒙 − 𝑤𝑤∆𝑡𝑡|𝑻𝑻𝑛𝑛 � �̇�𝒒|

• Terminal State
• Center of mass is <0.13 meters to the ground
• Simulation reaches 1000 steps forward in time

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Hyperparameter Tuning

12

𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐

…

Optuna Agent
Model

Hyperparameter
Distributions

Load Best
Hyperparameters

𝛾𝛾
Runs Batch

Optimization Jobs

𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐

…

𝛾𝛾
Create Agent

PPO2 Tuning
100 permutations

100,000 Training Episodes/permutation
~24 Hours to complete

TRPO Tuning
100 permutations

200,000 Training Episodes/permutation
~24 Hours to complete

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Visualizing Final Learned Policies

13

PPO2 Agent After 4 Million Episodes
Avg. Reward = 0.5 ±0.05
Training Time = 5 Hours

TRPO Agent After 4 Million Episodes
Avg. Reward = 2.5 ±1.5
Training Time = 6 Hours

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Training Scheme

• PPO and TRPO were trained
separately with their own optimal
parameters.

• Benchmarks of the learned
models were saved every 200k
episodes

• Since TRPO performed well in
exploration, the policy and value
function networks were extracted
and placed into a PPO agent to
continue training.

• The hypothesis was that the
reward signal noise would reduce
since PPO showed little variance
during learning.

14

PPO Pick-up Point

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Best of both worlds?

• Using TRPO to find a high return policy and value function
network, we then transfer this network to a PPO agent and run
optimization starting 4 Million episodes.

• The PPO agents best hyperparameters were then trained for an
additional 4 Million episodes to attempt to improve the quality of
the policy and value function networks.

15

TRPO PPO

𝑉𝑉𝜋𝜋(𝜃𝜃; 𝑏𝑏)

𝜋𝜋(𝜃𝜃; 𝑏𝑏)
TRPO Fitted

Hyperparameters
New PPO Fitted

Hyperparameters
~24 Hours

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Visualizing Final Learned Policies (Best of the Rest)

16

TRPO to PPO2 Agent After ~7 Million Episodes
Avg. Reward = 3 ± 1.5

Training Time = 11 Hours

TRPO Agent After 4 Million Episodes
Avg. Reward = 2.5 ±1.5
Training Time = 6 Hours

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Comparison

17

• Qualitative Assessment
• PPO: Took too literally the reward function and converged to a local

minimum solution.
• TRPO: Achieved a fast novel gait motion but with high speed comes

greater risk of losing or gaining a significant amount of rewards.
• Value Function Approximation

• Clearly TRPO achieves a higher return, but suffers from high variance in
the policy update without clipping.

• PPO starting with a high return policy still was not able to stabilize the
policy and value function networks.

• Increasing the # of layers and hidden units may be necessary for this
problem

• Optimization Results
• Running both agents for a longer number of episodes during optimization

would benefit the in the long-term stability of the learned policy and value
function networks.

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Summary

18

• A total time of 72 Hours tuning hyperparameters and 24 Hours raining
• TRPO outperformed PPO in terms of exploration
• PPO was not able to stabilize the optimal policy generated by TRPO
• Hyperparameter tuning is extremely important when experimenting

with different RL environments
• Without a reference gait trajectory, the learned policy depends on a

well defined reward function
• Variations to the quadrupeds mass, leg lengths, joint friction, sensor

noise, ect… May improve the robustness of the learned policy

• Developed in a Google Colab Notebook for ease of access

https://colab.research.google.com/drive/14gOUZhOGHNf3ZvtpfUbgGGii3tcnbgbv?usp=sharing

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Future Work

19

Investigate Multi-agent reinforcement learning methods

Provide a reference trajectory for stable policy

Deploy methods onto physical systems

Policy Gradient Methods: Learned LocomotionME8930 Final Project

References

20

Schulman, John, et al. “Proximal Policy Optimization Algorithms.” ArXiv.org, 28 Aug. 2017, arxiv.org/abs/1707.06347 .

Schulman, John, et al. “Trust Region Policy Optimization.” ArXiv.org, 20 Apr. 2017, arxiv.org/abs/1502.05477 .

Tan, Jie, et al. “Sim-to-Real: Learning Agile Locomotion For Quadruped Robots.” ArXiv.org, 16 May 2018, arxiv.org/abs/1804.10332 .

Erwin Coumans and Yunfei Bai PyBullet, a Python module for physics simulation for games, robotics and machine learning, 2016—2021, http://pybullet.org

Tsounis, Vassilios, et al. “DeepGait: Planning and Control of Quadrupedal Gaits Using Deep Reinforcement Learning.” ArXiv.org, 31 Jan. 2020,
arxiv.org/abs/1909.08399.

Kakade, S., et al. (2002, July). "Approximately optimal approximate reinforcement learning." In ICML (Vol. 2, pp. 267-274).

Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information processing systems (pp. 1531-1538).

https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html

https://stable-baselines.readthedocs.io/en/master/modules/trpo.html

http://pybullet.org/
https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html
https://stable-baselines.readthedocs.io/en/master/modules/trpo.html

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Appendix

21

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Policy Gradient Theorem

22

Policy Gradient Methods: Learned LocomotionME8930 Final Project

Environment: Overcoming Implementation Challenges

23

• Physics/Kinematics
• Bullet Physics engine handles the model environment interaction.
• All components have mass and inertia matrices.
• Joints have friction and dampening.

• Actuator Models
• Accurate models of the motors operating characteristics are used to

generate actions
• Simulated Latency

• Observations are back logged and sent with a delay to simulate the
latency a real control system would exhibit (0.001 – 0.002s)

• Gaussian noise is injected into state signals
• Parallelizable Agents

• Its possible to spin up several agents in headless mode, which can help
expedite training if the algorithm exploits multithreading or tensor cores.

Policy Gradient Methods: Learned LocomotionME8930 Final Project

PPO Tuning Results

24

Hyperparameters Values

Number of State Steps until Terminal State 𝑛𝑛𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 1276

Discount Factor 𝛾𝛾 0.909

Learning Rate 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0.00317

Entropy Coefficient 𝑒𝑒 3.59e-8

Clipping parameter controlling policy update rate 𝜖𝜖 0.345

Clipping parameter controlling value function update rate 0

of epochs when optimizing the surrogate objective function 𝐾𝐾 4

Generalized Advantage Estimator factor 𝜆𝜆 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -

Value Function Network (DNN) 2 layers with 64 hidden units each -

Policy Gradient Methods: Learned LocomotionME8930 Final Project

TRPO Tuning Results

25

Hyperparameters Values

Time steps per batch 𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑏 293

Discount Factor 𝛾𝛾 0.974

Kullback-Leibler loss threshold 0.0503

Weight for the entropy loss 5.03e-3

The compute gradient dampening factor 0.0135

Value Function Step Size 3.2e-3

Value Function # of iterations for learning 3

Generalized Advantage Estimator factor 𝜆𝜆 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -

Value Function Network (DNN) 2 layers with 64 hidden units each -

Policy Gradient Methods: Learned LocomotionME8930 Final Project

PPO+TRPO Tuning Results

26

Hyperparameters New Values Old Values

Number of State Steps until Terminal State 𝑛𝑛𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 1277 1276

Discount Factor 𝛾𝛾 0.913 0.909

Learning Rate 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 1.83e-5 0.00317

Entropy Coefficient 𝑒𝑒 5e-4 3.59e-8

Clipping parameter controlling policy update rate 𝜖𝜖 0.379 0.345

Clipping parameter controlling value function update rate 0 0

of epochs when optimizing the surrogate objective function 𝐾𝐾 1 4

Generalized Advantage Estimator factor 𝜆𝜆 0.861 0.988

Policy Network (DNN) 2 layers with 64 hidden units each - -

Value Function Network (DNN) 2 layers with 64 hidden units each - -

Policy Gradient Methods: Learned LocomotionME8930 Final Project

PPO Results

27

7-e5.1-

7-e1-

8-e5-

0

8-e5

7-e1

7-e5.1

7-e2

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

06.0-

04.0-

02.0-

0

02.0

04.0

06.0

08.0

1.0

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Advantage Estimate

Discounted Returns

Policy Gradient Methods: Learned LocomotionME8930 Final Project

• On-Policy method which aims to learn iteratively through a
surrogate objective function, which learns new policies for a
specified number of epochs.

• After these epochs have passed, the policy update is performed
carefully by choice of a clipping hyperparameter which ensures
policy update steps are not too large.

28

	ME 8930 Final Project Presentation
	Overview
	Policy Gradient Methods
	Policy Gradient Methods: Advantages
	Limitations of Plain Policy Gradient
	Comparing 2 Policies
	Monotonic Improvement in Policy
	Trust Region Policy Optimization
	Proximal Policy Optimization
	Application to Learned Locomotion
	Environment: Spaces, Rewards, Episodes
	Hyperparameter Tuning
	Visualizing Final Learned Policies
	Training Scheme
	Best of both worlds?
	Visualizing Final Learned Policies (Best of the Rest)
	Comparison
	Summary
	Future Work
	References
	Appendix
	Policy Gradient Theorem
	Environment: Overcoming Implementation Challenges
	PPO Tuning Results
	TRPO Tuning Results
	PPO+TRPO Tuning Results
	PPO Results
	Slide Number 28

